Tag Archives: Flying Friday

Database debacle: why aviation GPS systems are different

tl;dr: We’ve all been spoiled, and it’s Google’s fault.

All right, maybe it’s not entirely their fault (though I do love a good Google-bashing session), but the widespread availability of Google Maps put incredible price pressure on vendors of mapping data to drop their prices. That pressure led to today’s bounty of mapping applications: Google, Microsoft, and Apple offer high-quality map data on their mobile and desktop operating systems, and there is a huge number of applications that take advantage of this data and mash it up in interesting ways. Most of the major vendors of portable GPS devices quit charging for map data, given that their competition– smartphones– have instant map updates anytime, anywhere.

Sadly, this revolution in cheap, broadly available map data has largely bypassed the aviation world. In part that’s because the number of data sources are small; in the US, you can get approved digital chart data for aviation use from the US government or from a small number of private providers, many of whom take the government data and format it in various ways for specific applications or devices. The approach plates, sectional charts, and other maps that pilots depend on for planning and flying are generally not free (though, in fairness, some sites, such as SkyVector, make lots of data available for free).

If you have a panel-mounted or handheld GPS that’s certified for aviation use, you’ll be paying for regular database updates, one way or another.

This is true for two reasons. The first is that data quality is super important. Things change all the time: people put up new towers, airports open or close, the FAA changes routes to accommodate changes in air traffic patterns, and so on. If your car GPS doesn’t show the street you’re on, no biggie: you’re still on it, and there are probably signs. At worst, you can stop and ask for directions. On the other hand, if your airplane GPS doesn’t include a newly added TV tower along your route of flight, you may be in for a very unpleasant surprise.

The other reason is that the FAA requires you to use only certified and up-to-date data sources for navigation. You may use some data providers or devices for “reference” or “advisory” use, but you can’t depend on them as the sole source of navigation data. For example, the excellent Foreflight app for iOS has charts that display your aircraft’s position (known as “georeferenced” charts), which provides great situational awareness. For $149/year, you get full access to all the visual and instrument navigation charts for US airspace. But the FAA won’t let you use the iPad as a primary navigational instrument for instrument flight. For that, you need an IFR-certified GPS, and those have strict requirements for data quality and timeliness.

As part of my instrument flight course at GATTS, I’ve been learning to use the Bendix/King KLN94 navigator in my airplane. The KLN94 first shipped in (drum roll) 1991. Think about that for a second: I am flying with a GPS system that dates back to the First Gulf War. That said, it’s pretty capable; it can navigate me through almost all the different types of instrument approaches, and its user interface, while clunky, is not that much worse than the very popular Garmin 430/530 that followed it. (For an example of flying the KLN94, see this video.)  When Derek and I bought the plane, I knew the KLN94 database was out of date, but the owner gave us a Compact Flash card with a map update. (Note: yes, I said “Compact Flash.” Remember those? If so, then you are officially old.)

Today I got ready to install the database update on that card.. only to find that it was valid for 1-28 May of this year. That’s right; the whole card had one lousy month of map data on it.. data that was 3 months out of date. Showing up for my checkride with an outdated database in my GPS would lead to instant failure. But I found out about this about 215p on the Friday before a holiday weekend. I won’t say I peed a little, but I was getting unsettled at the prospect of hosing my checkride schedule. As soon as we landed, I called Bendix/King’s “Wingman” service number.. and got their answering machine. Uh oh.

At this point, I was trying to figure out how long it would take me to drive to Olathe, Kansas (not long) to pick up a new database card. Maybe I could lurk outside the Bendix building like a ticket scalper! Or I could hand-write a cardboard sign: “NEED KLN94 UPDATES PLEASE HELP”.

You might be wondering why I didn’t just download a new database update from Bendix/King’s web site. Fair question. See, there’s another problem with aircraft GPS systems. They often have ridiculous systems for providing data updates. KLN94 database updates can be downloaded from Bendix/King’s web site, but the only supported device for loading the databases is a single model of SanDisk CompactFlash card reader or you need a special cable to use it and the software to use that cable only works on Windows 95. Oh, that one card reader? It needs a firmware update, which requires a machine running Win95 to install. Other systems have their own failings, so I’m not picking on Bendix/King, but sheesh.

A second call to their tech support number got me a super helpful gentleman named Shane. He confirmed that only the Holy SanDisk could be used to load database updates, but he passed me over to Lorie, one of the folks in the database update department. She listened patiently to my explanation, refrained from saying how stupid I was to put off the update, and told me the solution: “Go to our web site, order the card, and I’ll make sure you get it tomorrow.” Whew, that seemed simple enough. I went to the web site, created an account, and found the KLN94 updates. For the low, low price of only $280, I could get a new CompactFlash card with data valid from 21 August to 18 September.

That’s right.


I ordered it anyway.

It will be here tomorrow. Then I can update my GPS and pass my checkride. After that, I will expedite installing a GPS system that has a lower ongoing maintenance cost. (In fairness, it’s only $120 to download a single month, and there are deep discounts for subscriptions, but I hope not to have the KLN94 long enough to make a subscription worthwhile.)

So, hats off to Shane and Lorie for their help; thanks to Bendix/King for continuing to support a 24-year-old GPS system, and shame on me for waiting until the last minute to check my database. Bet your boots that won’t happen again.

Leave a comment

Filed under aviation

Getting geared up for GATTS

So far, since Derek and I bought 706, I’ve logged just over 45 hours flying it. Solo, I’ve gone to Louisiana and Vermont; the boys and I have gone to Pigeon Forge, Demopolis, Atlanta, Anniston, and Tuscaloosa. Now it’s time to step my game up a notch: on Monday, I’m flying to Manhattan, Kansas, for a week of accelerated instrument training with GATTS. A few of the folks I’ve talked to (including family members and coworkers) have asked lots of good questions about this plan, so I thought a quick Q&A might be in order.

Q: What’s an instrument rating?
A: With an instrument rating, you can fly under what the FAA calls “instrument flight rules.” Basically, you can fly in and around clouds, fog, and rain, or in conditions of poor visibility– all by using only the instruments in your cockpit, without being able to see any landmarks or the horizon.

Q: So you can fly in bad weather!
A: Nope. An instrument rating allows you to take off, fly, and land under certain conditions. For example, to legally land at Huntsville’s airport, you must have at least a 200′ ceiling and 1/2 mile visibility. That doesn’t mean it would be safe to do so, just that if the weather is worse than that, you can’t land there. It’s not a license to fly in thunderstorms, blizzards, high winds, and the like, although each year a few people die from confusing “legal” and “safe” and taking off or flying through visible or embedded thunderstorms.

Q: Then why bother?
A: Think of a typical summer day in the South: partly cloudy in the morning, building thunderstorms in the mid-afternoon, then partly cloudy again in the evening. With an instrument rating, you can (legally and safely) penetrate the clouds, fly on top of them, then descend and land lately. You also get guaranteed routing and safety services from air traffic control, whereas when you fly visually those services are available on a best-effort basis.

Q: Kansas? Couldn’t you find a local instructor?
A: I love my instructors here in Huntsville. (Hi, John! Hi, Caroline!) But the big advantage of the GATTS program is that you spend the entire time flying. When I got my private license, my training dragged out because I had to line up 4 factors: my schedule, my instructor’s schedule, the airplane’s schedule, and the weather. By blocking out the time as one chunk, I should be able to build my skills much faster. Kansas is different enough from here that I will have to master the skills of navigation and approach management (in other words, I can’t depend on my knowledge of the local Huntsville area), but it doesn’t have a lot of demanding terrain or complex airspace.

Q: Is it like boot camp, then?
A: Wow, I hope not. There was a lot of yelling when I was in boot camp, for one thing. GATTS says their typical day is from about 830a to 6p. During that time, I’ll be in the classroom with my instructor, flying in the simulator, or flying my airplane. Oh, and eating lunch. The schedule varies from day to day, depending on what we’re working on. We’ll do this every day– weekends and Labor Day included– so that I get the most out of the time. I’ve already been able to carve out time for a few scheduled webcasts and conference calls that I couldn’t move.

Q: Is it expensive?
A: The answer to this question is always “yes” when it comes to aviation.

Q: No, really.
A: Yes, really. If you factor in just the instructor’s time alone, GATTS is more expensive. However, there’s no way on earth that I could get a local instructor to fly with me day in, day out long enough to learn what I need to know. Then I’d end up having to repeat lessons to knock the rust off. The GATTS program also includes lodging in Manhattan and a car to use. Plus, I’ve never been to Kansas.

Q: Why an accelerated program?
A: The best way to get proficient at flying is to fly. The best way to get, and keep, instrument proficiency is to compress your training, then use your instrument privileges regularly. I’ve already had to delay or change travel plans many times to account for vagaries of weather; being instrument-qualified doesn’t eliminate that (hello, thunderstorms!) but it gives me many more options. Ultimately, the airplane is a time machine: it lets me travel to places, and in time windows, where I otherwise couldn’t, so having the ability to fly in weather is really important to me. I want to do it as safely and proficiently as possible.

I’m planning, time and energy level permitting, to keep a daily journal of my experience at GATTS. Stay tuned…

Leave a comment

Filed under aviation

Huntsville to Vermont

As some of you may have noticed, I am planning to run a triathlon in a couple of days. This of course requires me to get to where the triathlon is, which in this case happens to be Vermont— several hundred nautical miles away from where I live. Luckily I had a solution for that problem. I took off from Decatur, stopped briefly at Winchester to fuel up, and headed north. Why Winchester? Fuel there is about $1/gal cheaper than it is at Decatur, and that makes a big difference when you’re buying 50+ gallons. Plus the staff there are super friendly and their facility is nearly brand-new: great, well-marked runway with a nice building. I saw an AgCat there filling his spray tanks and met Zachary, who just bought a Piper Lance a couple of months ago. We had a nice visit while I waited for my starter to cool down; I am still getting the hang of hot-starting the engine in this plane. The best technique seems to be to prime it just a tiny bit, then open the throttle full, set mixture to idle, and crank. You just have to be aggressive about enriching the mixture and closing the throttle when it does catch.

My flight northwards could not have gone better. I set up the autopilot, climbed to 7500’, and spent an hour or so dodging built-up clouds before settling on a steady course. During that time, I learned that the floor air vents can be opened or closed; when you open them, they work great at cooling down the cabin. This was handy because it was super hot on the ground— hot enough to melt my stash of protein bars inside my flight bag. I brought a cooler along so I could enjoy diet Coke on demand, which was a wonderful bonus.

On the first leg, I spent some of my time in flight reading the manual for my ancient panel-mounted GPS, which was installed in 2001, and I was surprised to find how capable it actually is; it just isn’t very user-friendly, so I still have a lot to learn, but I did get the time zone set, figure out how the altitude alerting function works, and learn how to set up complex flight plans instead of just using the “direct to” button. Originally I’d planned to stop at Rostraver (just outside Monongahela; try saying “Rostraver Monongahela” five times fast) but I noticed in flight that they close before I would have gotten there, so I decided to divert to Allegheny County instead. Fuel is a little more expensive, but that was offset by the fact that the airport was still open when I arrived. I parked the plane, hopped across the street to the Holiday Inn, and enjoyed a delicious calzone delivery from Mama Pepino’s. Then I hit the sack, intending to leave early this morning. The weather was not great when I awoke, so I did a bit of work and headed to the airport about 0900.

WP 20140703 001

706 on the ground at Allegheny County on Thursday morning

You can’t see it in the picture above, but the keys are on the dashboard, as shown below. This serves the extremely useful purpose of making it easy for everyone around to visually confirm that the keys aren’t in the ignition and that the airplane is therefore not startable. No one wants to tangle with an 84” propeller. This keychain has sentimental value, too; it came from Custer State Park on our 2005 trip to Sturgis. It was a Christmas present for Matt that year and he gave it back to me for the plane. The attached buffalo is named Pappy, after Pappy Boyington, not to mention Grandfather Buffalo, a family favorite book. Pappy is not quite as famous as The Lego Pilot but maybe he’ll get there someday.

Buffalo keychain

Corporate Air had taken good care of the plane overnight, so after a thorough preflight I launched with the intent to go direct to Montpelier, with Rome as an intermediate stop if the weather further north was still iffy. Pittsburgh limited me to 3000’ until I got further to the east, then I got 5500’, which was comfortably above the tops of the scattered clouds in that area. I went up to 7500’ about 50nm to the northeast and even then ended up having to dodge some higher buildups, but the clouds were gorgeous and by the time I got to Ticonderoga (see below) they were widely scattered.


Overhead Ticonderoga, NY; that’s Lake George 


My flight into Montpelier was completely uneventful (except that I got to talk to Boston Center, which was kinda cool). Julie and her boys were waiting for me, and I had a great time giving them a tour of the plane while we unloaded. Then it was back to her house for a nap, the Montpelier Mile, and the town’s fireworks.

Interestingly, I had a ton of different female air traffic controllers along my route. I’ve never had that happen before; I’m not sure why, but Nashville approach, Indianapolis Center, Pittsburgh Approach, and a couple of smaller approach control centers en route all had women working the tower cab.

Bonus picture: I saw this crop-dusting plane (an AirTractor AT802) when I refueled at Winchester. That might be my ideal job…

DSC 2394


Filed under aviation

Instructor-induced stupidity

First, a quick recap: this past weekend I had two flights planned. One of them went off OK, the other didn’t. My original plan was to fly 706 down to Louisiana with the boys to see my mom, grandmother, and family in Houma, Baton Rouge, and Alexandria. However, David and Tom were both working each day of the long weekend, so that wasn’t going to work. Instead, I planned to take Matt for a $100 hamburger, then take all 3 boys to Atlanta to eat at Ted’s on Monday after Cotton Row.

Matt and I flew to Anniston and had a fantastic meal at Mata’s (thanks to Bo for the recommendation!)  That gave me the opportunity to practice hot starts, which are a little tricky with fuel-injected Lycoming engines, at least until you get used to them. Sadly, the weather on Monday worsened before we were able to go anywhere, and this weekend is looking pretty crappy too.

Anyway, enough about that. This week’s FLYING LESSONS newsletter was typically excellent– it put a name to a phenomenon I’ve both seen and demonstrated: instructor-induced stupidity.

That the pilot raised the landing gear even while continuing to flare and touch down suggests what may really have been going on was a condition I call Instructor-Induced Stupidity. I credit a student of mine with coining the phrase “instructor-induced stupidity” to describe the tendency of a flight student to defer decision-making or responding to aircraft indications when there’s an instructor on board.

As a student pilot, it’s natural to defer to the instructor; after all, that’s why you’re there. If you read the entire article (which isn’t very long), you’ll see that the possible outcomes of IIS include gear-up landings, unsafe maneuvers, and general tomfoolery. It is fairly easy to unlearn this habit during initial training, but I can see how it might persist when flying with a new instructor, or in a different type of airplane, even with a well-experienced pilot. I did it once on my private-pilot checkride; the examiner called for a power-on stall, and I gave her one, all right, of such degree that we got to see the chevrons (see this video at about 0:22, except that I was pitching up, not down). The hell of it was, I knew better: a classic case of induced stupidity.

This phenomenon isn’t limited to flight instruction, either; I’ve seen it many times when teaching otherwise intelligent and capable people about Exchange, Windows, and other related topics, and I’ve seen it in consulting engagements too: sometimes people seem to just lose their decision-making ability and judgment when placed in a situation where there is someone who (at least on paper) is more knowledgable or experienced. Maybe a better phrase for it would be “authority-induced stupidity”.

To counteract it, you have to remember to own what you own: when you’re pilot-in-command, or in charge of an Exchange deployment, or responsible for planning an event, don’t turn off your brain just because an authority is present or involved. Like so many aspects of human behavior, this is easy to say but harder to do!

Leave a comment

Filed under aviation

N32706 comes home

Well, I finally went and did it: I bought an airplane. DSC 2057

in Salt Lake City prior to the flight homeward

I’d been considering buying a plane pretty much nonstop since starting work on my pilot’s license, and even looked at a few while I was still in California. My initial plan was to buy something that could hold me and all 3 boys, plus luggage, and still have a reasonable fuel load. This left out most airplanes, including the Cessna 172, the Piper Arrow family, and the Cirrus. I really liked the Piper Cherokee Six and its derivatives, the Lance, Saratoga, and 6X. They combined decent performance with a huge payload: 6 seats and full tanks meant that I could easily haul the whole herd, with baggage, a good 700 nautical miles from home without stopping. After I moved, I put aside my plane search for a while; I found that the rented 182 I was flying from Redstone could, barely, hold me plus the boys plus full fuel, but with no baggage and sluggish climb performance in warm weather. Worse, we were squashed, and as the boys grew (or, more accurately, gained weight), we’d be in danger of going over gross takeoff weight unless I took fuel or people out… so I started looking again, but I couldn’t see a good way to afford a Cherokee Six, so it was sort of a desultory search.

Then I had an epiphany: I was buying more airplane than I needed. “After all,” I reasoned, “now that David is off at college, he won’t be flying with me much, and in a couple of years Tom will be at college too. So a 182 will work; we can just squeeze into it for a little longer until David is fully out of the nest.” So I started looking for an affordable 182, put a deposit down, and promptly had the deal fall through (a story for another time). Back to the drawing board.

Then I offhandedly mentioned to my financial advisor that I was looking for an airplane. “Oh, my husband’s a pilot,” she said. “Would you be interested in a partnership?” Yes. Yes, I would.

Long story short, Derek (my new partner, and a hell of a guy) scoured the market for Cherokee Sixes. We found one that we really liked and it was sold out from under us. Then we found another one that we really liked, and when I called the seller, he said “oh, that ad shouldn’t still be up there, because the plane was sold months ago.” Third time was the charm: we found N32706 for sale in Salt Lake City, had the prebuy done there (another long and boring story that I’ll eventually post about), and closed the deal on May 15.

John Blevins, one of my flight instructors, flew out to Salt Lake on Delta to pick it up. After dinner at In-N-Out (who knew they were in SLC?) and an overnight at the local Marriott, we departed KSLC about 730am. Our planned route was to go to Los Alamos (KLAM), thence Muskogee, Oklahoma (KMKO) and then back to Huntsville. It looked like that would take about 10 hours total flying time.

The airplane started right up, and we got VFR flight following at 11500’ south past Provo. Right after takeoff, we noticed some oil spray on the windshield, but the oil temperature and pressure remained good, , then flew to the Carbon, Canyonlands, and Cortez VORs before descending into Los Alamos. Along the way we were treated to some gorgeous scenery.

A mountain

random mountain off the pilot’s side, about 2000’ below us

unusual rock formations

interesting rock formations; I wonder what causes the striations?

We’d thought it would be a fun place to stop for lunch, and fuel appeared to be relatively cheap. Neither of these things proved to be true. While refueling the airplane, I found heavy grease all over the front of the cowling. The constant-speed propeller on this airplane has inner workings that are lubricated with heavy grease; the good news is that there was no engine oil anywhere it shouldn’t be. John and I conferred for a bit, then started walking into town to the local AutoZone. Our plan: get a screwdriver, take off the propeller spinner, and locate the source of the grease. Why did we walk? Well, the airport was unattended (even though we got there between 7a and 1p, the hours when it was supposed to be attended), and the one taxi company in Los Alamos didn’t answer our phone calls. About halfway there, a fellow pilot whom I’d waved at while fueling the plane drove by, recognized us, and asked if we needed a ride— we hitched with him to AutoZone, bought the stuff we needed, and rode back to the airfield, whereupon he got the mechanic he uses to come over and have a look. (Thank you very much, Gary and JP! Side note for another time: the camaraderie and helpful spirit that is generally present in the aviation community is wonderful.)

We removed the spinner and found that it contained a big streak of grease, almost like someone had smeared it in there like frosting– but only on one side. There was no grease leaking from the Zerk fittings on the prop hub, so we degreased the prop, hub, spinner, cowling, and windshield, put everything back together, and determined that we’d take off as planned, but land at the first sign of any more gunk on the windscreen. Our first alternate was Santa Fe, which is nearby; then Tucumcari, then Amarillo. (I should mention at this point that Los Alamos has some interesting departure and arrival restrictions, and it is right next to a large chunk of restricted airspace, courtesy of LANL. Also, we never did get lunch there).

KLAM airport sign

The best part of the Los Alamos airport

Takeoff was normal and we had a completely uneventful flight to our next planned stop. Originally we were going to stop in Muskogee but decided instead to stop at Sundance Airpark, just outside of Oklahoma City. The crew at Sundance Aviation could not have been any more friendly; they fueled the plane, loaned us a car, and suggested an area where we’d find some restaurants. After a solid Mexican dinner at Abuelita’s, we took off headed for Huntsville. There was a weird rectangular line of storms lying astride our planned route, so we ended up flying direct to the Little Rock VOR, then direct to Huntsville. 

see what I mean? mostly rectangular

Turns out it’s hard to find archived NEXRAD images but this one shows the funny line of storms

The final leg took us about 3.5 hours, 2.4 of which I logged as night time and 1.5 of which I logged as actual instrument. We started off flying at 9000’, but moved to 7000’ for more favorable winds. That put us in between two cloud layers, which was great because a) it was beautiful and b) the air was super smooth. We discovered that the intercom system had a music input jack, which was great, except that I made the mistake of letting John pick the music. Let’s just say that I don’t want to hear any more Colbie Caillat songs in the next two or three years.

PaulR  Dell 20140517 034between the layers over Arkansas

We arrived at Huntsville International about 1030p, after 10.5 hours of flying time. Our duty day was lengthened by our two fuel stops, and I was pretty tired by that point so I was happy to have a 12,000’ runway waiting for me. Signature hangared the plane, John filled out my logbook, and I got home just in time for that rectangle of storms to unleash a large, and relaxing, thunderstorm. I slept like a baby that night!

A couple of days later, Derek and I moved the plane from Huntsville to its new home, North Alabama Aviation in Decatur. This weekend, I plan to take it out for some sightseeing, in the first of what I hope will be many trips with, and  without, the boys. So when you hear a propeller airplane, look up; it might be me! (Or Derek.)


Filed under aviation

“What could I learn from that?”

Yesterday the boys and I were headed to the Huntsville Museum of Art, which from our house requires taking I-565 eastbound. As we approached the onramp, our progress was slowed by a large volume of backed-up traffic, interrupted by a convoy of fire engines and an ambulance. They headed west, and we eventually got on the road headed east, but not before craning our necks trying to see what the fuss was about. This sort of reaction to an accident or unusual event nearby is quite human. We are very much driven by spectacle, and often our reaction is based out of an unhealthy curiosity.

I say that because one thing I’ve consciously tried to do as a pilot is ask myself “what could I learn from that?” when reviewing aviation accident results. The aviation world has no shortage of well-documented accidents, ranging from the very large to the very small. Let’s leave out big-iron accidents, which are almost vanishingly rare; in the general aviation corner, we have several sources that analyze accidents or near-misses, including the annual Nall Report,the long-running “I Learned About Flying From That” and “Aftermath” columns in Flying, the NTSB accident database, and plenty more besides. So with that in mind, when I saw the headline “2013 F/A-18 crash: Out of fuel, out of time and one chance to land” in Stars and Stripes, my first thought wasn’t “cool! a jet crash!” but rather “Hmm. I wonder if there’s anything in common between flying an F-18 off a carrier and a Cessna off a 7500’ runway.”

It turns out that the answer is “yes, quite a bit.”

The article covers the chronology of an F-18 crash involving an aircraft from VF-103 operating off EISENHOWER. During mid-air refueling (which is frequent but by no means less complex or dangerous for being frequently practiced), the aerial refueling hose became entangled and broke off. This damaged the refueling probe on the Super Hornet. This was serious but not immediately an emergency; the pilot was within easy diversion range to Kandahar, but elected to return to the ship because he thought that’s what the air wing commander wanted them to do. A series of issues then arose— I won’t recount them all here except to say that some of them were due to what appear to this layman to be poor systems knowledge on the part of the pilot, while others involve simple physics and aerodynamics. The article is worth reading for a complete explanation of what happened.

The jet ended up in the water; both pilot and NFO ejected safely.

What did I learn from this? Several things, which I’ll helpfully summarize:

  • The problems all started due to a mechanical failure caused by unexpected turbulence. Takeaway: no matter how good a pilot you are, you aren’t in control of the weather, the air, or the terrain around you.
  • Diverting to Kandahar would have been easy, but the pilot chose not to because he made an assumption about what his CO wanted. Two problems here: what happens when you assume and the pressures we often put on ourselves to get somewhere even when conditions call for a divert or no-go. Could I be subject to the same pressures and make a poor decision because of get-there-itis?
  • “The pilot had been staring at that probe and the attached basket for more than an hour but failed to realize its effect on the fuel pumps.” You can’t ever stop paying attention. The pilot flew for 400 miles without noticing that his fuel state wasn’t what it should have been. Could I be lulled into missing an early indication of a fuel or engine problem during a long, seemingly routine flight?
  • The aircraft was 11 miles from EISENHOWER and was ordered to divert to Masirah, 280NM away, then had to turn back to the ship 24 minutes later. The pilot didn’t decide this, a rear admiral on the ship did. The article didn’t say whether the pilot questioned or argued with that decision. In the civil aviation world, the pilot in command of an aircraft “is directly responsible for, and is the final authority as to, the operation of that aircraft.”  I imagine there’s something similar in military aviation; even if not I’d rather be arguing with the admiral on the deck than having him meet my plane guard after they fish me out of the water. Would I have the courage to make a similar decision against the advice of ATC or some other authority?
  • In at least two instances the pilot made critical decisions— including to eject the crew— without communicating them to his NFO. NASA and the FAA lean very heavily on the importance of crew resource management, in part of situations like Asiana 211, United 173, and American 965. (Look ‘em up if you need to). When I fly am I seeking appropriate input from other pilots and ATC? Do I give their input proper consideration?
I don’t mean for this post to sound like armchair quarterbacking. I wasn’t there, and if I had been I’d probably be dead because, despite years of fantasizing to the contrary, I’m not a fighter pilot. However, I am a very firm believer in learning from the mistakes of others so I don’t make the same mistakes myself, and I think there’s a lot to learn from this incident.

Leave a comment

Filed under aviation

Stuck! (or, why I need an instrument rating)

Earlier this week I suffered an indignity common to all VFR pilots who fly cross-country: I got stuck someplace by weather.

I’d flown into Houston on Saturday evening, planning to hop down to Corpus Christi the next day and then back to Alexandria Sunday night. The weather Saturday night when I arrived (after a loooong flight featuring a steady 40kt headwind) was marginal VFR, with ceilings of just under 3000’, but the weather cleared a good bit Sunday afternoon to the west. I wasn’t able to get to Corpus, but I had hopes that the weather would clean up Monday morning so I could make it to Alex to surprise Julie before she arrived.

Long story short: not only did the weather not improve, it got quite a bit worse and stayed that way until midmorning Wednesday.

This picture from Tuesday morning sums it up nicely. In the foreground on the left, you see N1298M, my trusty steed. Pretty much everywhere else, you see clouds. The weather at the time I took this was 600’ ceilings with visibility of 3/4 statute miles. Needless to say, that is not legal weather for flying under visual flight rules. Later that day, it started to rain, and rain, and RAIN. I wasn’t the only plane stuck on the ground, but at least the FBO operated by Gill Aviation had a good restaurant (try the pecan-crusted catfish!) and free cookies.

PaulR  Dell 20140224 001

Wednesday morning the weather cleared a bit; it was 2800’ broken and 7SM visibility when I took off. I had to pick my way around a bit; instead of going direct I first went north to Conroe/Lone Star Executive, thence more or less direct to Bastrop (which has an almost deserted airport with a super helpful attendant), thence direct to Redstone. The flight home was perfectly uneventful, with weather steadily clearing as I got further to the east. But being pinned on the ground was aggravating, and it’s clear that I need to work on getting my instrument rating sooner rather than later. Luckily I have a plan…

1 Comment

Filed under aviation

Conquering the instrument written exam

BLUF: this was one of the most difficult written exams I’ve ever taken, far harder than any IT certification exam I’ve done,

Back in December I wrote about the instrument written, widely alleged to be the most difficult of the FAA’s written exams.

There’s a lot of disagreement over the “right” way to earn a new rating or pilot certificate. What works for me is to study the knowledge base that I have to demonstrate mastery of while I’m working on the airmanship portion. Some folks advocate completing the written before any flight training starts, while others prefer to put the written off until right before the check ride. I guess my approach is somewhere in between. At the time of my December post, I had envisioned taking the test sometime in the first quarter; right after Christmas, I had the opportunity to sign up at a reduced rate for the Aviation Ground Schools program, so I signed up and set a goal of taking the exam on 10 February, the day after the school ended.

My path to the exam involved several different sources of information. The FAA doesn’t publicly post its pool of test questions, but the exam has been around long enough, and the knowledge areas are well-enough known, that all of the major test prep products have more or less the same questions. Each provider has a different approach to how they teach the material; some prefer Gleim, some swear by ASA, and so on. I spent a lot of time with Sporty’s Study Buddy app, which is a pretty faithful simulation of the test, and I read everything about IFR I could get my hands on, including the excellent AskACFI web site and the forums at the Cessna Pilots’ Association web site. Caroline, one of my two flight instructors, gave me a list of stuff to read that was very helpful, and I started working my way through both the FAA Instrument Procedures Handbook and the FAA Instrument Flying Handbook. It’s fair to say that I was stuffing my head with a lot of somewhat disconnected facts and factoids, so I was a little concerned when I headed off for my test prep seminar last weekend.

The seminar I chose is run by Don Berman, who started flying the year I was born and started instructing before I was housebroken.  Online registration was simple and quick, and I got ample preflight notification of everything I needed: what to bring, where the class would be held, what the cancellation policy was, and so on. The seminar I attended was held at the Comfort Inn near Houston Hobby: not a fancy hotel, but adequate for what we needed. When I arrived, Don introduced himself, gave me a fat stack of material, and got us started right on time. He’s an extremely lively presenter and his long experience as a pilot, flight instructor, and classroom teacher shines through, both in his delivery and in the quality of his presentation and visual aids. He’s also clearly got a lot of experience with classroom management; he started and ended on time, gave us adequate breaks, and kept everyone on task. He handed out optional quizzes at lunch both days and Saturday at the end of class, along with a final exam (again optional) on Sunday. The questions were hand-selected by him from the pool of questions in the ASA book; he said that if we could handle them, we should have no trouble with the actual exam.

In fairness, I should point out that Don bills his seminars as test preparation seminars— that’s exactly what they deliver. There were a few areas (like how to interpret an HSI, a navigation instrument that I’ve never flown with) where I came into the seminar with weak skills. Don taught me what I needed to know to dissect and answer test questions about HSIs, but I’m still not ready to jump in an HSI-equipped airplane and use it for a cross-country flight. Which is fine— the test covers all sorts of other things that I will probably never use, including automatic direction finding (ADF) equipment. With the test out of the way, I can now focus on building skills with the equipment I do fly with.

One of my biggest customers asked that I be in Raleigh on the 10th, so I flew there straightaway and stayed there Monday and Tuesday (escaping just in time to avoid their snowmageddon). Today was my first window of time to schedule the test. I was a little concerned that I would forget some of the more esoteric material, and I did. However, my basic knowledge was pretty solid, and I think the random selection of test questions was feeling friendly since I only got a handful of questions on my weaker topics. One interesting aspect of the test is that a new set of questions, with associated diagrams, was just added to the test pool on Monday, so there were some question types that were new to me.

I passed the exam with an 87%, a score I am delighted with. That said, I have a few problems areas that I need to work on as I continue my training, and I realize that passing the written doesn’t mean that I know anywhere close to all that I need to pass my check ride… but I’m getting there!

1 Comment

Filed under aviation

On aircraft engines, part 2

A couple of weeks ago, I wrote a post about piston aircraft engines (tl;dr: ancient and expensive technology but generally very reliable). The fact that the general aviation fleet is still powered almost exclusively by these engines may have surprised you, and I wish I could say that it’s getting better right away.. but it’s not. There are some encouraging signs on the horizon, though.

One alternative is to just replace the engine (or its components). This can be done through a process known as supplemental type certification (STC), an existing airframe/engine combination can be changed, often in significant ways, provided you can prove to the FAA’s satisfaction that the changes are not unsafe. For example, there is a well-known STC for many models of Cessna 182 that allows you to run plain auto gas in the engine. There are others covering all sorts of engine upgrades and replacements: Electroair makes an electronic ignition system, Peterson, Texas Skyways, and P.Ponk make kits to replace the 182’s engine with larger and more powerful versions, and there’s even an STC to put an SMA diesel engine up front. At the high end, O & N Aircraft will happily sell you a turbine engine that will turn your Cessna 210 into a real beast (and set you back several hundred thousand dollars, too.)

The problem with STCs is that they tend to be expensive (since the manufacturer has to run the entire FAA approval gauntlet) and very specific (the STC allows you to make the specified changes only to the exact make and model specified in the STC). The expense of STC engine swaps raises the question of how much sense it makes to put an expensive engine into an inexpensive airframe, e.g. Peterson quoted me more than $80,000 to put a new engine into a 1969 182 with a market value of just under $50,000. That didn’t seem to make a lot of sense to me. Less expensive STCs, such as the Electroair electronic ignition, may have reliability or efficiency benefits that make sense, but it’s hard to see that happening for an entire engine.

A few manufacturers have made other attempts to give us better engines. One that I remember well was the Mooney PFM, a collaboration between Porsche and Mooney that put an air-cooled Porsche flat-six into the Mooney M20. The PFM had a single-lever throttle (with no manual mixture or prop adjustment), was fuel-injected, and could optionally be turbocharged. However, it wasn’t very successful in the marketplace despite its advantages.

My longtime friend Phil asked a great question in a comment to the previous post: what about turbine and diesel engines? Why don’t manufacturers just use them instead? Well, they do in new aircraft. For example, Piper will happily sell you a Meridian (with a Pratt and Whitney PT6 turbine, the gold standard in turboprop engines) starting at about $2.2 million dollars or a Mirage, which is about 40 knots slower, uses a piston engine, and costs roughly half as much. Turbine engines, of course, are mechanically and operationally simple and very robust, but they are expensive to acquire and maintain, which pretty much rules them out for the class of airplanes that most GA pilots have access to. Diesels are starting to make inroads too; the only model of Cessna 182 you can now buy is the Cessna 182 JT-A, which replaces the old-school piston engine with a 227-hp SR305 diesel (the same as the one available via STC for older 182s). The history of diesel engines for general aviation is long and complicated; suffice to say that Cessna and Diamond are the only two manufacturers I can think of who are currently selling diesel-powered aircraft despite their efficiency advantages. However, the idea of a drop-in diesel STC replacement for the O-470, IO-540, and other popular engines is gaining traction in the market, with both Continental and Lycoming developing products.

More interestingly, Redbird’s RedHawk project is converting Cessna 172s by putting diesel engines and improved avionics in them; I suspect that Redbird will be very successful in selling these refurbished aircraft as primary trainers, and that may serve as an effective tipping point both for generating demand and demonstrating the potential market for diesel STCs for other lower-cost/older aircraft. We can only hope…

1 Comment

Filed under aviation

A flight simulator primer

I had originally planned to write more about engines this week, but reality— or simulated reality— has intruded, and this week I’m going to talk about flight simulators.

For your convenience, I’ll skip the part of this post where I would wax lyrical about how cool it was the first time I played Sublogic’s old Flight Simulator on an Apple II. It was cool but it wasn’t much of a simulator experience. Fast forward from the mid-80s to today and the state of the art in PC-based simulators is X-Plane, an almost infinitely customizable simulator that can handle aircraft from gliders up to the Space Shuttle. (The demo video on their web site is well worth a look to see some of what can be done with suitable hardware). There are hundreds of different airplane types available, including military, general aviation, biz jets, and big iron such as the Boeing 7×7 line. Each aircraft has its own customized flight model and appearance, so what you see can be as realistic as the designer of that model feels like building in (and as realistic as your graphics hardware can support). Here’s a fair example of what the sim looks like on my setup:

Cherokee Six approach into KAEX

Daylight approach to runway 32 at Alexandria International Airport

This is a daylight approach (created by checking the box that says “use the current date, time, and weather”) to runway 32 at Alexandria International. You can see the runways, taxiways, other airport stuff, ground features, and the Red River. The more powerful your computer, the more graphical features you can turn on. Since I am running on a 3-year-old MacBook Pro, I have the detail level set to “medium” but perhaps one day I’ll have enough hardware to turn up some of the visual fidelity knobs.

However, visual fidelity isn’t why I wanted a simulator. There are people, including many non-pilots, who like to hop in the sim and pretend that they are airline pilots, fighter pilots, or whatever. I wanted one as a means to practice instrument flying, which often involves being in conditions where you can’t see a darn thing outside. For example, right now the weather at KMGY (Dayton-Wright Brothers) is 1.5 miles visibility, an overcast layer at 300 feet, and light snow. Here’s what the approach to runway 2 there looks like right now; It doesn’t take much GPU horsepower to draw solid gray, as you can see:

On final for rwy 2 at KMGY

Same daylight, different weather, this time at KMGY

So why bother? If you take a look at the approach plate for the GPS approach to runway 18R at Huntsville, you’ll see that there are specific lateral and vertical points to hit: inbound on the approach, you fly to the JASEX intersection, and you cannot arrive there below 3000’. From there, you fly a course of 182° to GETEC, where you arrive at 2500’, and so on. Understanding where you need to be during the approach, and then putting the airplane in that position, is the key to a safe arrival. Practicing the skill of mentally visualizing your aircraft position and orientation relative to the approach layout, then controlling the aircraft as needed, is really valuable, and in a simulator you can repeat it as often as necessary without delay, even pausing it when needed. For that reason, the FAA has allowed you to log up to 20 hours of simulator time as part of the requirements for an instrument rating, provided you spend that time with an instructor and are using an approved simulator. (They recently announced that they will only allow 10 hours of time to count, effective February 3, but the AOPA and other groups are fighting that proposed rule change.)

Without going into all the boring details, suffice it to say that there are many different gadgets to practice your flying with, from the massive, super-high-fidelity simulators used by airlines to the home-brew rig I’m using, with a $50 piece of software and another $200 in controllers, all running on a commodity laptop. This article from IFR Refresher explains the difference nicely: a simulator is a full-size replica of a specific type of aircraft cockpit, with motion and high visual fidelity. Training devices (TDs) don’t have to have motion, and there are several subtypes, including PC-based devices (PCATDs) and basic and advanced training devices (BATDs and AATDs, respectively).

For your simulator practice time to be loggable, you need a PCATD, BATD (such as this Redbird TD or FlyThisSim TouchTrainer), or AATD. My slapped-together rig is not FAA-certified as any of these, so I can’t log the practice time, and therefore it doesn’t count towards the requirements for my rating. However, being able to practice approaches before I fly them is invaluable, and I plan to make heavy use of the ability to do so. To help with that, I’ll probably spring for the FlyThisSim analog Cessna pack, which includes higher-fidelity models for several of the aircraft I normally fly. In particular, the pack includes the Garmin G430 and G530 GPS systems, which are very useful when flying approaches since they give you a moving-map rendition of your location and position and they can be coupled to the autopilot so that the GPS provides lateral guidance (though the airplanes I fly don’t have vertical coupling so the pilot still has to control altitude). Coupled with judicious use of the expensive and fancy Redbird FMX AATD at Wings of Eagles, this should help me (eventually) master the complex process of safely flying an IFR approach.

Leave a comment

Filed under aviation

On piston aircraft engines, part 1

If you’ve noticed, car manufacturers often brag on the technology or fuel efficiency of their engines. If you recognize phrases like “fuel-injected,” “variable valve timing,”  “double overhead cam,” or “turbocharged,” then the automotive industry’s marketing has succeeded— even if you don’t know what those things are you probably think of them as desirable.

Now forget most of that. The basic design of most aircraft piston engines are stuck solidly in the 1930s.

Take, for example, the 1975 Cessna 182P I often fly, N1298M. Its engine is a Continental O-470-U variant. No electronic ignition. No fuel injection. It weighs 390 pounds, makes 230 horsepower, and costs about $21,000 to overhaul (more if you replace your timed-out engine with a remanufactured or factory-new one).

Yep, that’s right. The engine in that airplane costs as much as many cars do, and yet from an efficiency perspective it’s terrible— 470 cubic inches to make only 230 horsepower! (In fairness, the O-470 is capable of more; in the 182 it’s derated to 230hp). By comparison, the Nissan Altima— hardly a supercar— has a 213 cubic-inch engine (well, 3.5L, really) that makes 270hp and can be completely replaced for about five grand. Now, in fairness, the Nissan engine is a much newer design. Maybe a better comparison is the engine from a 1975 Corvette, which made 205hp from 350 cubic inches and weighed about 325lbs. I won’t hazard a guess at the original cost, but overhauling a small-block 350 would cost maybe $1500 in parts today.

Behold the mighty O-470

Newer aircraft of course have somewhat more modern engines. For example, a 2012 Cessna 182 (identical in performance to the 1975 model I normally fly) uses a Lycoming IO-540-AB1A5 engine that still makes 230hp, but features fuel injection and a somewhat more modern design than the O-470. An overhaul for this engine will run you about $24K, while a brand-new one lists for just under $77K. (In 2013, Cessna stopped selling the piston 182 and moved to a new diesel engine, a topic I’ll have more to say about in part 2.) Another example: the Cirrus SR22G5, the latest version of the best-selling piston single, runs a fuel-injected Continental IO-550N that, apart from being fuel-injected, is still just as noisy, heavy, inefficient, and expensive as its predecessors.

Besides the expense, these engines require much more management than you might think. In flight, whether your engine is fuel-injected or carburated, you have to adjust the fuel-air mixture as you change altitude. You must also monitor the cylinder head temperatures (CHTs), and in some aircraft you have to adjust cowl flaps or other cooling devices. When was the last time you had to do that in your car? You don’t; in pretty much every car built since the late 1970s, a computer takes care of adjusting spark timing, mixture, and a number of other parameters to get the best performance or economy from the engine. All you do is press the accelerator. In a piston airplane, that’s a different story (something I’ll also talk more about in part 2).

The reasons for this sad state are many and complex, but the biggest two are easy to describe succinctly: reliability and cost.

Despite the fact that these engines use ancient technology, they are superbly reliable because their basic design is so mature. Engine and airframe manufacturers have 50+ years of data about their behavior, and when the possible consequences of an engine failure escalate from “pull over and call a tow truck” to “fall screaming out of the sky and die in a fireball,” you can see why that reliability is so desirable.

Cost is a multifaceted factor. First, it is exceptionally expensive to certify anything for aviation use. The FAA has a demanding and complex set of rules (known as “part 23”), backed by a fairly arbitrary process, for certifying things such as engines, propellers, and avionics. It’s prohibitively expensive for most new entrants to get a new engine and airframe combination certified. Manufacturers such as Cessna and Piper have little incentive to spend millions of dollars certifying new engine designs for their 50+-year-old airframe designs. Second, these engines are produced in very low volumes by modern manufacturing standards. In a really, really good year, Lycoming or Continental might sell a number of new engines measured in the low thousands (perhaps more, but it’s certainly fewer than 10K units/year). In that volume, it’s hard to see much improvement from scale, and given that these engines are largely hand-built, this is unlikely to change.

I haven’t touched on another drawback, one which really requires its own post: piston engines normally run on leaded fuel. This has several related consequences: economic (it’s more expensive because it’s a lower-volume product), environmental (duh), political (various satraps in California have tried several times to ban or legislate leaded aviation fuel out of existence), and technical. Some engines, such as the ones for the 182, can be made to run on ordinary auto gas (known as mogas), but higher-compression engines in larger airplanes need the lead to prevent pre-detonation, so we’re stuck with it for now.

Like the weather, the state of engine tech in general aviation is often discussed but there is little individual pilots and owners can do about it. Manufacturers, though, have a variety of tricks up their sleeve, which I’ll discuss in part 2.


Filed under aviation

The instrument written exam

As described in FAR 61.65, the FAA requires three categories of things to earn an instrument rating: you have to meet the experience requirements (which includes things like being proficient in English and convincing your instructor to sign you off), you have to pass the practical test, and you have to pass the written exam. I haven’t had much opportunity to fly with my instructor lately, so I’ve been focusing on studying for the written exam, which covers weather, IFR procedures, regulations, how to read IFR charts, and all sorts of other goodies.


The picture above shows a portion of the IFR low chart surrounding David Wayne Hooks Airport in Houston. Yes, the FAA really expects you to know what all that stuff means! Every little symbol and text block has its own particular meaning: minimum en-route altitudes, crossing restrictions, distances, and lots of other things are all encoded into the symbology, and there is a completely different visual language used for diagramming instrument approaches. That’s a shorthand way of saying that there’s a lot of bookwork required to be ready for the test. I’ve been using the Sporty’s IFR course, which is pretty good, along with their test-prep app. I’m re-reading Taylor’s Instrument Flying and working my way through a couple of other books I have. Finally, I am considering taking one of the weekend accelerated ground schools offered by companies such as Aviation Seminars and Rick Yandle, but that requires at least one full weekend of time, plus several hundred dollars— money and time I could be using to fly instead.

Now, time to hit the books again…

Leave a comment

Filed under aviation

My introduction to night instrument flying

There’s something particularly special about flying at night. As the air cools, it tends to calm, and on a clear night the visibility is stunning.

Sadly, I hadn’t flown at night since leaving California. After moving here, I ran afoul of RAFA’s requirement for night checkouts. See, the FAA has its own set of requirements about what’s known as “night currency.” In order to legally fly with passengers at night, you must have completed at least 3 takeoffs and landings at night during the preceding 90 days. On top of that RAFA requires that you have a RAFA instructor check your night flying technique out. This is immensely complicated by the fact that the Redstone Arsenal airfield currently doesn’t have any working lights, so getting checked out requires moving your plane to Huntsville while it’s light, then putting it back the next day. I just hadn’t been able to get an instructor and an airplane together at the same time, so my FAA currency had lapsed too.

Luckily last Friday I was able to solve that problem. Caroline, one of the RAFA instructors, had posted a picture on Facebook of a night flight she did with a student, and I commented on it, so she responded and told me to let her know when I wanted to fly at night. Challenge accepted! I booked the trusty club 182 for the evening, but it was down with a transponder failure, so I ended up in a 172 with Caroline and her friend Norma, who came along just for fun. Rather than a typical night requalification— 3 circuits around the traffic pattern— we decided to get some instrument practice. After taking off from Huntsville, I put on the foggles and flew us to Cullman,where I did a not-terrible job of flying the GPS approach to runway 20. (More on the various types of approaches and what they mean in a future post). Then I flew us back to Huntsville, where I flew the instrument landing system (ILS) approach to runway 36R. That was much more challenging, I thought, in part because we were getting radar vectors from the controller (a fancy way of saying that he was assigning us headings to fly to line us up with the approach course). After my approach, Caroline flew one while I acted as safety pilot, then I flew another approach and we called it a night (well, except for an excellent dinner, but that’s not really aviation-related).


Norma took this picture upon landing on 36R at Huntsville

Flying instrument approaches at night is no different than flying them during the day: the airplane doesn’t know it’s night, and you’re either flying in clouds or using a view-limiting device that keeps you from seeing outside in any event, so you stay focused on the instruments and fly the approach. Despite the fact that there shouldn’t be a difference, I really enjoyed the night approaches and look forward to doing it again… and again and again, since getting really good at instrument landings is kinda the whole point of getting your instrument rating.

Leave a comment

Filed under aviation

First real instrument lesson

I took the boys down to Tuscaloosa last weekend to visit David. The weather was fine, and we had a lovely visit, but it ran a bit long, and then I couldn’t get the plane started. It’s finicky, but it was my fault, not the plane’s. Then I wouldn’t have been able to get back to Redstone before dark, and I’m not night current, so we ended up leaving the plane and driving home (a process made much harder by the fact that it’s impossible to rent a rental car after 6pm in Tuscaloosa on a Sunday). The next day I needed to go back down to pick up the airplane, so I called my instructor to see if he wanted to fly me down there. The flight turned into an instrument training lesson, which was exactly what I was hoping for.

Weather at Redstone on departure was fair: ceilings were about 3500’ with visibility of 4 miles. It started raining just as I was finishing the preflight. John had filed an IFR flight plan direct to Tuscaloosa at 5000’, which turned out to be ideal for getting me some actual instrument time, including flying through rain. This turned out to be a nonissue because when you’re only using your cockpit instruments for navigation, not being able to see because of rain doesn’t pose a probem.

I say “actual” because you can log both simulated instrument time (in which you wear a view-limiting device such as this) or actual time. “Actual” in this context means you’re flying completely on instruments, without visual reference to the ground. In our case, that meant we were flying through a layer of clouds for a total of nearly 50 minutes. That meant that I had to control the airplane’s altitude, attitude, and course using only the instruments in the cockpit. All pilots are required to receive training on this, and to demonstrate proficiency in doing it, as part of the initial training process, but doing it in actual is quite a different matter. It’s very demanding work; you have to keep a consistent scan pattern on your instruments to make sure you’re holding course and altitude.

One key difference is that the best way to do this is to use predetermined engine settings: at a certain RPM and manifold pressure at a given altitude, you can predict how fast the plane will go and to make it climb or descend at a predictable rate, you know how much power to add or remove. Flying on an instrument flight plan often involves reaching very specific altitudes at specific points in space, i.e. you may be told to cross a fix at a given altitude, and you need to figure out how to make that happen.

I did reasonably well; I didn’t have any trouble maintaining my altitude, and my heading control was generally good except for a couple of minor excursions when I got over-focused on altitude or airspeed. You really have to divide your attention between all of the instruments to maintain a consistent flight path, and that’s very much a learned (and perishable) skill.

We made it safely to Tuscaloosa, landed, and I got the Arrow started. I took off first, flying VFR back to Huntsville at 3500’. In the Arrow, I was averaging about 145kts groundspeed on the return, and the flight, which took place between a high layer of solid overcast and a lower layer of broken clouds, was quite nice.



between the layers en route TCL-HSV

After a smooth and uneventful flight, and a decent landing, I logged 0.2 simulated instrument, 0.8 actual, 0.2 VFR for the leg down, plus another 1.0 for the return VFR flight. I’m looking forward to more instrument time… make mine actual!

Leave a comment

Filed under aviation

My new favorite word: “unable”

Sometimes one word can speak volumes. This is especially true when there’s a well-defined and mutually understood vocabulary that all parties in a conversation are using– which is exactly what happens when you talk on the radio with an air traffic controller. Although it often sounds bizarre to outsiders, the back-and-forth between pilot and controller can be incredibly information-rich. The FAA has a standard glossary that pilots and controllers are supposed to use, and you can’t go far wrong by sticking with it. Many of the terms in the glossary compress a great deal of meaning into a few syllables, which is important when you’re busy– which, as either a pilot or controller, you will be!

For example, the controller at a busy training airport such as Palo Alto (which usually has between 500-700 takeoffs/landings per day, a lot for a small airport with a 2500′ runway) could say “One Tango Golf, there’s a 172 on final. If you go right now, then you can take off on runway 31”, or he can say “One Tango Golf, landing traffic, expedite, cleared for take off, 31”. Now consider the workload of a pilot flying into an airport like Atlanta or Dallas, or a controller in the tower cab at Chicago-O’Hare or Newark, and you see why brevity is so important.

My favorite of all these expressions is simple: “unable”. The glossary defines it thus:

Indicates inability to comply with a specific instruction, request, or clearance.

Depending on how you use it, it can mean “I won’t do that” or “I can’t do that.” Rather than provide a long explanation, all you have to say is “unable.” Suppose I’ve filed a route from point A to point B and the controller wants to have me deviate to point C, and I happen to be low on fuel? “Unable.” Want me to turn towards an area of built-up clouds? “Unable.” Because the pilot in command has ultimate responsibility for the safety of flight, as PIC you have unlimited authority to accept, or reject, controller requests or instructions– with the very significant caveat that you may be required to account for doing so. If the controller tells me to sidestep to a parallel runway on approach, and I don’t, and I cause an accident, having said “unable” isn’t going to get me out of trouble.

The magic word works both ways, of course: when you ask a controller for something (“Niner Eight Mike, request lower” to get a lower altitude, for example) the controller can merely say “Unable” and that’s it. Of course, whoever receives the U-word can always ask for something different, or explain why they want whatever it is.

Now I just need to brief the people I talk to most frequently so they know what the word means to. “Dad, can you take me to the mall?” “Unable.”

Leave a comment

Filed under aviation